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Crypto today

◮ Ephemeral ECDH on ≈ 256-bit curve to compute shared key

◮ Use EdDSA signatures for public-key authentication

◮ Use AES-128 for encryption

◮ Use HMAC-SHA256 for authentication

Various alternatives . . .

◮ Traditional DH (in Z
∗

p)

◮ RSA signatures, DSA signatures

◮ Stream cipher, e.g., Salsa20

◮ Other authenticators, e.g., GHASH, Poly1305. . .
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The end of crypto as we know it. . .

“In the past, people have said, maybe it’s 50 years away, it’s a dream,

maybe it’ll happen sometime. I used to think it was 50. Now I’m

thinking like it’s 15 or a little more. It’s within reach. It’s within our

lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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“In the past, people have said, maybe it’s 50 years away, it’s a dream,

maybe it’ll happen sometime. I used to think it was 50. Now I’m

thinking like it’s 15 or a little more. It’s within reach. It’s within our

lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

Quantum computers will

◮ break RSA (factoring),

◮ break DH, DSA (discrete log),

◮ break ECC (ECDL),

◮ require doubling symmetric key sizes (e.g., use AES-256 instead of
AES-128),

◮ require doubling hash outputs to protect against preimage attacks.
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Post-quantum crypto

◮ Asymmetric crypto that resists attacks by quantum computers

◮ Four main ideas for constructions:
◮ Code-based crypto: mainly encryption (e.g, McEliece)
◮ Lattice-based crypto: encryption (e.g., NTRU) and signatures
◮ Multivariate crypto: encryption and signatures
◮ Hash-based signatures: only signatures (e.g., XMSS)

◮ Less efficient (in time or space), than ECC

◮ For most of those: underlying problems not as well studied as, e.g.,
factoring or ECDLP

◮ Even less studied: attacks by quantum computers
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PQCRYPTO

◮ EU project to make post-quantum cryptography practical

◮ 11 partners from academia and industry
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PQCRYPTO

◮ EU project to make post-quantum cryptography practical

◮ 11 partners from academia and industry

◮ 3 technical work packages:
◮ WP1: Post-quantum cryptography for small devices
◮ WP2: Post-quantum cryptography for the Internet
◮ WP3: Post-quantum cryptography for the cloud

◮ For more information, see http://pqcrypto.eu/
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Hash-based signatures

◮ Security relies only on the security of cryptographic hash function

◮ Even if one hash function turns out to be insecure, can switch to
another one

◮ If all hash functions are insecure, we’re in bigger trouble anyway
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◮ One-time signature (OTS) scheme proposed by Lamport in 1979.

◮ Use cryptographic hash function h with 256-bit output

◮ Key generation:
◮ Private key: (pseudo-)random

((s0,0, s0,1), (s1,0, s1,1), (s2,0, s2,1), . . . , (s255,0, s255,1)), each
si,j ∈ {0, 2256 − 1}

◮ Public key:
((h(s0,0), h(s0,1)), (h(s1,0), h(s1,1)), . . . , (h(s255,0), h(s255,1)))

◮ Signing:
◮ Sign messages (hashes) of 256 bits (m0, . . . , m255)
◮ Signature is (s0,m0

, s1,m1
, s2,m2

, . . . , s255,m255
)

◮ Verification:
◮ Compare hashes of signature components to elements of the public

key

◮ Secure only for a signature on one message

◮ 16KB private and public key, 8KB signature
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Merkle Trees

◮ Merkle, 1979: Leverage one-time signatures to multiple messages

◮ Idea: Put a binary hash tree on top of all public keys:
◮ Leaves are hashes of public keys
◮ All other nodes are hashes of their two child nodes
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Merkle Trees

◮ Merkle, 1979: Leverage one-time signatures to multiple messages

◮ Idea: Put a binary hash tree on top of all public keys:
◮ Leaves are hashes of public keys
◮ All other nodes are hashes of their two child nodes

◮ Maximal amount of messages to sign is fixed (number of leaves)

◮ Public key is the root node of the tree (256 bits)

◮ Signature is the one-time signature plus authentication path

[picture on the blackboard]
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◮ Most of the time, need to compute only a few hashes for signing
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A first analysis

◮ Let’s fix 232 signatures (≈ 4Bio.)

◮ Key generation needs to compute the whole tree (233 − 1 hashes)

◮ Signing remembers the previous authentication path

◮ Most of the time, need to compute only a few hashes for signing

◮ Public-key size: 32 bytes

◮ Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

◮ Signature size: ≈ 25KB
◮ 8KB Lamport Signature
◮ 16KB Lamport public key
◮ 32 · 32 = 1024 bytes authentication path
◮ 4 bytes for the index of the leaf node

◮ Practical. . . ?
◮ Sizes and speeds are not too bad
◮ Can even make signatures smaller (more later)
◮ We need to remember the state!
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The state

◮ Remembering the state means updating the secret key after each
signing

◮ This is not compatible with
◮ Backups
◮ Keys shared across devices
◮ Virtual-machine images
◮ . . .

◮ This is not even compatible with the definition of cryptographic
signatures
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Goldreich’s approach

◮ Goldreich, 1986: stateless hash-based signatures

◮ Idea: Use binary tree as in Merkle, but
◮ make the tree huge (e.g., height h = 256), such that one can pick

leaves at random;
◮ each node corresponds to an OTS key pair;
◮ leaf nodes are used to sign messages;
◮ non-leaf nodes are used to sign the hash of the public keys of the

two child nodes.

◮ All OTS secret keys are generated from a seed
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Analysis of Goldreich’s approach

◮ Public key and secret are still small (e.g., 32 bytes)

◮ Key generation is fast (only generate root OTS key pair)

13



Analysis of Goldreich’s approach

◮ Public key and secret are still small (e.g., 32 bytes)

◮ Key generation is fast (only generate root OTS key pair)

◮ Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

13



Analysis of Goldreich’s approach

◮ Public key and secret are still small (e.g., 32 bytes)

◮ Key generation is fast (only generate root OTS key pair)

◮ Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

◮ Signature becomes very large, for example with Lamport OTS:
◮ 256 · 24KB for Lamport signatures and public keys
◮ 256 · 32bytes for authentication paths
◮ 32 bytes for the index of the leaf node

13



Analysis of Goldreich’s approach

◮ Public key and secret are still small (e.g., 32 bytes)

◮ Key generation is fast (only generate root OTS key pair)

◮ Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

◮ Signature becomes very large, for example with Lamport OTS:
◮ 256 · 24KB for Lamport signatures and public keys
◮ 256 · 32bytes for authentication paths
◮ 32 bytes for the index of the leaf node

◮ Total size of 6MB

◮ More efficient OTS helps, but still very large signatures
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SPHINCS

◮ Bernstein, Hopwood, Hülsing, Lange, Niederhagen,
Papachristodoulou, Schneider, Schwabe, and Wilcox-O’Hearn, 2015:

SPHINCS – Stateless, practical, hash-based, incredibly nice

cryptographic signatures
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SPHINCS
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A high-level view on SPHINCS

◮ Use a “hyper-tree” of total
height h

◮ Each tree has height h/d

◮ Inside the tree use Merkle
approach

◮ Between trees use Goldreich
approach

TREEd-1

✁W,d-1

h/d

TREEd-2

✁W,d-2

TREE0

✁W,0

HORST

✁H

h/d

h/d

log t
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A high-level view on SPHINCS

◮ Use a “hyper-tree” of total
height h

◮ Each tree has height h/d

◮ Inside the tree use Merkle
approach

◮ Between trees use Goldreich
approach

◮ Sign messages with a few-time

signature scheme

◮ Significantly reduce total tree
height

TREEd-1

✁W,d-1

h/d

TREEd-2

✁W,d-2

TREE0

✁W,0

HORST

✁H
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A zoom into SPHINCS

◮ We propose SPHINCS-256 for 128 bits of security

◮ In the following, only consider (slightly simplified) SPHINCS-256:
◮ 12 trees of height 5 each
◮ Use WOTS as one-time-signature scheme
◮ Use HORST (HORS with tree) as few-time signature scheme
◮ Fix n = 256 as bitlength of hashes in WOTS and HORST
◮ Fix m = 512 as size of the message hash (BLAKE-512 hash function)
◮ Use ChaCha12 as pseudorandom generator

◮ SPHINCS-256 really uses WOTS+ instead of WOTS

◮ Some more modifications required for security proofs

16



Deterministic, collision-resilient, signing

◮ Typical setup for stateless hash-based signatures (e.g., Goldreich):
◮ Obtain message M , compute h(M)
◮ Sign h(M) using random leaf from the tree
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◮ Security depends on randomness generator

◮ Approach in SPHINCS:
◮ Include long-term secret SK2 in private key
◮ Compute

= BLAKE-512(SK2||M) = (R1, R2) ∈ {0, 1}256 × {0, 1}256

◮ Sign D = BLAKE-512(R1||M); include R1 in the signature
◮ Use last 60 bits of R2 to select a leaf

◮ Additional advantage of this deterministic signing: easier testing

◮ Similar trick in Ed25519 signatures (this is not specific to
hash-based signatures!)
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HORST

◮ Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

◮ HORST uses two parameters: k = 32 and t = 216

◮ Need that k · log2 t equals the length of the message hash
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◮ HORS(T) secret key: t 256-bit pseudorandom values
(sk0, . . . , skt−1)

◮ HORS public key: H(sk0), . . . , H(skt−1)

◮ HORST public key: root of a Merkle tree on top of the HORS public
key

◮ Signing:
◮ Chop 512-bit message digest into k chunks (m0, . . . ,mk−1)
◮ Signature consists of k parts (skmi

,Authmi
)

◮ Authmi
is the authentication path in the Merkle tree

◮ Each signature reveals k = 32 out of 216 secret-key pieces

◮ Can sign several times before an attacker has a good chance of
having enough pieces
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◮ Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

◮ In our case: 256-bit-to-256-bit hashing F

◮ Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing

◮ In our case: 512-bit-to-256-bit hashing H

◮ In total 216 = 65536 invocations of F

◮ In total 216 − 1 = 65535 invocations of H

◮ Note that F and H are much more special than a general
cryptographic hash function (fixed input size!)

◮ Signing needs to compute 32 authentication paths

◮ Can compute the whole tree, extract required nodes

◮ Can also use more memory-friendly algorithm, extract nodes on the
fly
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◮ Compute C =
∑ℓ1−1

i=0
(w − 1−mi), write as (c0, . . . , cℓ2−1)

◮ Signature: σ = (σ0, . . . , σℓ−1) =
(Fm0(sk0), . . . , F

mℓ1−1(skℓ1−1), F
c0(skℓ1), . . . , F

cℓ2−1(skℓ−1))

◮ Verification: “Finish computing the hash chains”, compare to public
key

◮ Note: SPHINCS does not sign the hash of the public key, but the
root of an L-tree on top of the WOTS public key

◮ An L-tree is a binary tree where nodes without siblings get promoted
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◮ Crucial for SPHINCS performance: WOTS key generation

◮ 15 · 67 = 1005 invocations of F

◮ Computation of L-tree: 66 invocations of H

◮ WOTS signature size: 32 · 67 = 2144 bytes
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◮ 2n-bit-to-n-bit hashing (H).

◮ Applying a full-fledged hash function would be overkill

◮ Idea: use a fast permutation π, compute
◮ F (M1) = Chop(π(M1||C), 256)
◮ H(M1||M2) = Chop(π(π(M1||C)⊕ (M2||0

p)), 256)

◮ This is secure under certain assumptions about π

◮ Speed is obiously largely determined by speed of π
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◮ Consider b-bit permutation with c-bit capacity has
b− c bits input and b− c bits output

◮ We need (b− c) ≥ 256

◮ Keccak (SHA-3) permutation is extensively studied, but way too big
(b = 1600, c = 512)

◮ Instead, use ChaCha12 permutation b = 512, c = 256

◮ ChaCha is an improvement of Salsa, both proposed by Bernstein

◮ ChaCha12 uses 12 rounds to permute the 512-bit state

◮ Operations are on 32-bit words

◮ General structure is “add-rotate-xor” (ARX)

◮ The same permutation is used in Blake-512
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SPHINCS-256 analysis

Overall computational cost of SPHINCS-256

◮ Two invocations of BLAKE-512 over the message together with
short random
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Overall computational cost of SPHINCS-256

◮ Two invocations of BLAKE-512 over the message together with
short random

◮ HORST signature:
◮ Generation of 2MB of random stream with ChaCha12 (65536

Chacha12 permutations)
◮ 65536 invocations of F (65536 ChaCha12 permutations)
◮ 65535 invocations of H (131070 ChaCha12 permutations)

◮ 12 WOTS authentication paths, each:
◮ 32 · 15 · 67 = 32160 invocations of F (32160 ChaCha12 perms.)
◮ 32 · 66 = 2112 evaluations of H in the L-tree (4224 ChaCha12

perms.)
◮ 31 evaluations of H for the binary hash tree (62 ChaCha12 perms.)

◮ Total cost:
65536 + 65536 + 131070 + 12 · (32160 + 4224 + 62) = 699494
ChaCha12 permutations

◮ This ignores (neglible) cost for 12 WOTS signatures
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Target architecture

◮ Intel Haswell processors featuring AVX2

◮ 16 vector registers of length 256 bits each

◮ Supports arithmetic on vector of integers

◮ Particularly interesting: arithmetic on 8× 32-bit integers
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◮ Could obviously also use this here, but:
◮ We have 8-way parallel vectors in AVX2
◮ Internal vectorization removes instruction-level parallelism
◮ Needs frequent shuffling of vector entries

◮ Much better: vectorize 8 independent computations of F or H

◮ This requires interleaving 32-bit words in memory

◮ 8 way parallel computation of F : 420 Haswell cycles

◮ 8 way parallel computation of H : 836 Haswell cycles
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◮ WOTS key generation computes 67 independent hashing chains

◮ Could vectorize across those, but 67 is not divisible by 8

◮ WOTS authentication-path computation computes 32 independent
WOTS keys

◮ Efficiently vectorize those 32 independent key generations

◮ Again, this requires interleaving of 32-bit words

◮ Cost for WOTS signing is negligible; no need to vectorize
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Moon)

◮ Hashing from secret to HORS public key: 216 parallel hashes

◮ Obvious how to vectorize, again, needs interleaving

◮ Consider the tree as 8 independent trees with “small tree on top”

◮ Vectorize across those 8 independent trees

◮ Again, this needs interleaving

◮ Can re-use the interleaving of the 216 parallel hashes

◮ Could even consider the output of ChaCha12 as already interleaved
(but: compatibility issues)

◮ Handle the small tree on top non-vectorized (neglible)
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Results

◮ SPHINCS-256 is slightly more complex (random bitmasks all over
the place)

◮ Results for full SPHINCS-256 on Intel Haswell (Xeon E3-1275):
◮ Keygen: 3 237 260 cycles
◮ Signing: 51 636 372 cycles
◮ Verification: 1 451 004 cycles

◮ Sizes for SPHINCS-256:
◮ Public Key: 1056 bytes
◮ Secret Key: 1088 bytes
◮ Signature: 41000 bytes

◮ For more details see http://sphincs.cr.yp.to
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